Texture-Based Visualization of Unsteady 3D Flow by Real-Time Advection and Volumetric Illumination
نویسندگان
چکیده
This paper presents an interactive technique for the dense texture-based visualization of unsteady 3D flow, taking into account issues of computational efficiency and visual perception. High efficiency is achieved by a 3D graphics processing unit (GPU)-based texture advection mechanism that implements logical 3D grid structures by physical memory in the form of 2D textures. This approach results in fast read and write access to physical memory, independent of GPU architecture. Slice-based direct volume rendering is used for the final display. We investigate two alternative methods for the volumetric illumination of the result of texture advection: First, gradient-based illumination that employs a real-time computation of gradients, and, second, line-based lighting based on illumination in codimension 2. In addition to the Phong model, perception-guided rendering methods are considered, such as cool/warm shading, halo rendering, or color-based depth cueing. The problems of clutter and occlusion are addressed by supporting a volumetric importance function that enhances features of the flow and reduces visual complexity in less interesting regions. GPU implementation aspects, performance measurements, and a discussion of results are included to demonstrate our visualization approach.
منابع مشابه
Real-Time Advection and Volumetric Illumination for the Visualization of 3D Unsteady Flow
This paper presents an interactive technique for the dense texture-based visualization of unsteady 3D flow, taking into account issues of computational efficiency and visual perception. High efficiency is achieved by a novel 3D GPU-based texture advection mechanism that implements logical 3D grid structures by physical memory in the form of 2D textures. This approach results in fast read and wr...
متن کاملGPU-Based 3D Texture Advection for the Visualization of Unsteady Flow Fields
We present an interactive visualization approach for the dense representation of unsteady 3D flow fields. The first part of this approach is a GPU-based 3D texture advection scheme that allows a slice of the 3D visual representation to be updated in a single rendering pass. In the second step, the result of the advection process is displayed by texture-based volume rendering. Since both parts a...
متن کاملDense Geometric Flow Visualization
Flow visualization has a long tradition in scientific data visualization. Approaches for 3D vector fields however have only recently experienced a boost due to the introduction of programmable graphics hardware with large texture memory. Consequently, volumetric flow visualization has entered many disciplines of science and engineering including mechanics, physics, chemistry, meteorology, geolo...
متن کاملA Case Study on Hardware-Accelerated Lagrangian-Eulerian Texture Advection for Flow Visualization
A hardware-based approach for visualizing unsteady flow fields by means of Lagrangian-Eulerian advection is presented. The implementation allows texture advection to be performed completely on the graphics hardware in a single-pass rendering. We discuss experiences with the interactive visualization of unsteady flow fields that become possible due to the high visualization speed of the hardware...
متن کاملInteractive 3D Flow Visualization Based on Textures and Geometric Primitives
This thesis presents research in the area of flow visualization. The theoretical framework is based on the notion that flow visualization methodology can be classified into four main areas: direct, geometric, texture-based, and feature-based flow visualization. Our work focuses on the direct, geometric, and texture-based categories, with special emphasis on texture-based approaches. After prese...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE transactions on visualization and computer graphics
دوره 13 3 شماره
صفحات -
تاریخ انتشار 2007